Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(1): 252-263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298788

RESUMO

Background: Phencyclidine (PCP) causes psychosis, is abused with increasing frequency, and was extensively used in antipsychotic drug discovery. PCP discoordinates hippocampal ensemble action potential discharge and impairs cognitive control in rats, but how this uncompetitive NMDA receptor (NMDAR) antagonist impairs cognition remains unknown. Methods: The effects of PCP were investigated on hippocampal CA1 ensemble action potential discharge in vivo in urethane-anesthetized rats and during awake behavior in mice, on synaptic responses in ex vivo mouse hippocampus slices, in mice on a hippocampus-dependent active place avoidance task that requires cognitive control, and on activating the molecular machinery of translation in acute hippocampus slices. Mechanistic causality was assessed by comparing the PCP effects with the effects of inhibitors of protein synthesis, group I metabotropic glutamate receptors (mGluR1/5), and subunit-selective NMDARs. Results: Consistent with ionotropic actions, PCP discoordinated CA1 ensemble action potential discharge. PCP caused hyperactivity and impaired active place avoidance, despite the rodents having learned the task before PCP administration. Consistent with metabotropic actions, PCP exaggerated protein synthesis-dependent DHPG-induced mGluR1/5-stimulated long-term synaptic depression. Pretreatment with anisomycin or the mGluR1/5 antagonist MPEP, both of which repress translation, prevented PCP-induced discoordination and the cognitive and sensorimotor impairments. PCP as well as the NR2A-containing NMDAR antagonist NVP-AAM077 unbalanced translation that engages the Akt, mTOR (mechanistic target of rapamycin), and 4EBP1 translation machinery and increased protein synthesis, whereas the NR2B-containing antagonist Ro25-6981 did not. Conclusions: PCP dysregulates translation, acting through NR2A-containing NMDAR subtypes, recruiting mGluR1/5 signaling pathways, and leading to neural discoordination that is central to the cognitive and sensorimotor impairments.

2.
PLoS One ; 9(8): e104364, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25089620

RESUMO

Long-term memory (LTM) formation requires new protein synthesis and new gene expression. Based on our work in Aplysia, we hypothesized that the rRNA genes, stimulation-dependent targets of the enzyme Poly(ADP-ribose) polymerase-1 (PARP-1), are primary effectors of the activity-dependent changes in synaptic function that maintain synaptic plasticity and memory. Using electrophysiology, immunohistochemistry, pharmacology and molecular biology techniques, we show here, for the first time, that the maintenance of forskolin-induced late-phase long-term potentiation (L-LTP) in mouse hippocampal slices requires nucleolar integrity and the expression of new rRNAs. The activity-dependent upregulation of rRNA, as well as L-LTP expression, are poly(ADP-ribosyl)ation (PAR) dependent and accompanied by an increase in nuclear PARP-1 and Poly(ADP) ribose molecules (pADPr) after forskolin stimulation. The upregulation of PARP-1 and pADPr is regulated by Protein kinase A (PKA) and extracellular signal-regulated kinase (ERK)--two kinases strongly associated with long-term plasticity and learning and memory. Selective inhibition of RNA Polymerase I (Pol I), responsible for the synthesis of precursor rRNA, results in the segmentation of nucleoli, the exclusion of PARP-1 from functional nucleolar compartments and disrupted L-LTP maintenance. Taken as a whole, these results suggest that new rRNAs (28S, 18S, and 5.8S ribosomal components)--hence, new ribosomes and nucleoli integrity--are required for the maintenance of long-term synaptic plasticity. This provides a mechanistic link between stimulation-dependent gene expression and the new protein synthesis known to be required for memory consolidation.


Assuntos
Potenciação de Longa Duração/genética , Memória de Longo Prazo/fisiologia , Plasticidade Neuronal/genética , Poli(ADP-Ribose) Polimerases/biossíntese , Sinapses/genética , Animais , Colforsina/administração & dosagem , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/genética , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Plasticidade Neuronal/fisiologia , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/biossíntese , Poli Adenosina Difosfato Ribose/genética , Poli(ADP-Ribose) Polimerases/genética , RNA Ribossômico 28S/biossíntese , RNA Ribossômico 28S/genética , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...